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lob. The model also predicts some trends, backed by experimental data,

regarding the effect of particle size, particle size distribution and

fluid velocity on dispersion.

1.

Abstract

In order to study the effect of the pore size distribution and flow

segregation on dispersion in a porous media, we consider the dispersion of

solute in an array of parallel pores. Equations are obtained for the

dispersion coefficient in laminar and turbulent flow, as a function of the

particle Peclet number. The theory fits quite well cumulative experimental

data from various researchers in the Peclet number range from 10-3 to
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1. Introduction

The effect of the distribution of pore

dispersion coefficient in a porous media, is

sizes on the magnitude of the

a complex problem due to the

complicated geometry and flow distribution around individual particles.

One approach to this problem was presented by Greenkorn and Kessler [1]

and Haring and Greenkorn [2]. They extended the straight pore model of

Saffman [3] and De Josselin De Jong [4] to include a distribution of pore

radii and pore lengths. This approach is statistical in nature, since it is

based on a random walk of a marked particle of fluid whose probability of

passing through a given pore is directly proportional to the volumetric

flow rate in the pore. This type of model is useful since it can provide

an idea of how sensitive the dispersion coefficient is to the distribution

of pore sizes, and can generate both longitudinal and transverse dispersion

coefficients. Indeed, Greenkorn and Kessler [I] cite results indicating

that the ratio of longitudinal to transverse dispersion coefficients is quite

sensitive to changes in the pore size distribution. One disadvantage of this

approach, is that it neglects the details of how the hydrodynamics of the

flow in the pores would affect dispersion. In particular, it is not possible

to consider laminar versus turbulent flow differences, or how the fluid

properties, the Reynolds and Schmidt numbers, would affect dispersion.

To this end, we consider the simplest type of model for a porous media that

would allow one to include flow profiles and known values of dispersion

coefficients in individual pores, and that one can solve exactly. By studying

dispersion in an array of parallel pores, one can vary the flow from laminar

to turbulent, change the shape of the pore, and vary the pore size distribu-

tion. Interestingly enough, the results of this model give very close agree-

ment with the Peclet number dependence of measured dispersion coefficients

I
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4.

in packed beds. In addition, it predicts trends on how the dispersion

coefficient varies with the spread and the mean value of the particle size

distribution that have been verified experimentally. The aeneral problem

of dispersion caused by segregated channels in a porous media is also of

interest in the tracer study of fields to be used for coal gasification.

2. The Dispersion Coefficient

Consider an array of N straight parallel pores as shown in Figure 1.

Each pore has a radius
‘i and an area-averaged fluid velocity in the z

direction <vz>i. We assume that in each pore the flow is fully developed,

and that we can describe the area-averaged concentration <c>.
1 of an

inert solute in the pore in terms of a dispersion equation,

where Di is

area-averaged

a<c>i a<c>i a<c>i

at
+ <v >. —

zlaz
= Di y (1)

the dispersion coefficient in pore i. Now we define an

concentration for the porous media, at a qiven z, in terms

of the area-averaged concentrations in each pore, namely

(2)

where Ai is the area of each pore and A
P

is the total pore area,

N

Ap =
I

Ai

i=l

(3)

Note that in Eq. (2) all the <c>i are properly weighted by their corres-

I
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pending fluid area so that {c} corresponds to the intrinsic phase-averaged

concentration of solute in the porous media [5]. If we multiply Eq. (1)

by Ai, sum over all i from 1 to N and divide by Ap, after some

manipulations, one obtains,

a{c} a{c}b a2{c}
— + {Vz} ~ =at {D} D

azz
(4)

where {v.} is the area-averaged fluid velocity in the porous media,
L

N

{Vz} = A;’
z

<v >.
Z1 Ai ,

i=l

{D} is an area-averaged dispersion coefficient,

N

{D} = A;’ ~ Di Ai
i=l

{db is a bulk-averaged concentra~ion,

1. <C>i<v >. A.
Zll

{C}l. =
1=1

u
{vz} Ap

and {c}D is a concentration weighted by the d

N
pore,

L

<c>i Di Ai

{C}D = 1=
{D} Ap

Equation (4) is not much use in its current form

different dependent variables and the parameters

(5)

(6)

(7)

spers”on coefficient in each

(8)

since it contains three

depend on individual pore
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concentrations. What we would like to have is a dispersion equation that

would give us a reasonable approximation for {cl. Consider a dispersion

equation for the porous media of the form,

a{c}*
at + {Vz]?$y . {D}*az{c}*

az2
(9)

whose solution {c}* will not equal to {c} point by point, but which will

have the same zeroth, first and second moments in the axial direction,

‘k ‘fi{c}*dz=~zk{c}dz, k=(),l,,

-m -m

If we assume that for a pulsed system,

(lo)

take

(lo)

and

This

the zeroth and

we find that,

last criterion

a{c}_ ~ at z . t ~,

{c}= ~- (11)

first moments of Eqs. (4) and (9) and use property

a~o f

37-= o, (12)

m=~
ob o (13)

will be satisfied whenever a dispersion model is

applicable (see appendix). Taking the second moment of Eqs. (4) and (9)

and equating the results, we obtain an equation for the dispersion coefficient,

{D}* = {D}rn@
‘o + ‘Vz’lm’b: “ )

(14)



.

where ~ m

[
{c}Ddz,‘oD =

.0

(15)

and m

‘lb =
J

Z{C}bdZ (16)

-w

The first term in Eq. (14) may be simplified if we take the zeroth moment

of Eqs. (2) and (8),

I

where

N

= “T+- 1 DiAimoi,
‘oD

i=l

(17)

N
1

mo=~
1

Aimoi (18)

P i=l

/

m

m.= <c>idz
01

-m

(19)

is the zeroth moment of the concentration in pore i. Dividing Eq. (17)

by Eq. (18) and multiplying by {D} we find,

N

z
DiAimoi

’00{D}.— = i=l

‘o
N

I
Aimoi

i=l

The quantity Aimoi is the total amount of solute in pore i,

Mi ‘ Aimoi

(20)

(21)
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while the total amount of solute in the porous media is,

N
N = z Aimoi (22)

i=l

Defining the fraction of the total amount of solute that is present in pore i,

w. = Mifl,
1 (23)

(24)

~~

z‘i = 1,

i=l

we can write Eq. (20) simply as,

N
‘oD .

{D} —
z

DIMi (25)
‘o

i=l

Since the pores are not interconnected, OJi is a constant for each i

whose value depends on how the solute was originally distributed into the

pores. The most reasonable way of doing this is to distribute the solute

according to the ratio of the volumetric flow rate in each pore to the total

volumetric flow rate,

<v >.
Z1 Ai

w. = —
1

{vz} Ap

The second term in Eq. (14) may be similarly simplified. Taking

moment of Eq. (7) and (2) and using Eq. (18), one can show that,

(26)

the first
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‘lb - ‘1 = ~-1-—

‘o ~, ‘li ‘i[: - ‘1~. (27)

where mli is the first moment of the concentration in pore i,

I
03

m,i = Z<c>i dZ (28)

-m

We can obtain an expression for mli in terms of moi if we take the first

moment of Eq. (1) and integrate the result,

‘Ii =
moi<v>it (29)

where we have used the initial condition that the average position of the

pulse at t = O is zero. Using Eq. (29), (27) and (23), the

in Eq. (14) becomes,

[1-m N
{Vz} !IL_J .

[

<v z>
{Vzl t

x
— -‘Vz>i (A)i

‘o {Vz}
i=l

Using Eq. (30) and (25), we find the final expression for the

coefficient, Eq. (14),

N N

I I [“

<Vz>
{D}* = Di% + {Vzlt ‘Vz>i +

{Vz}
i=l i=l

second term

11 (30)

dispersion

-1 1 (31)

Several aspects of Eq. (31) are worth mentioning. The quantity {!)}*

is now expressed simply as a function of the flow hydrodynamics of each

individual pore through the terms z i<v > and Di. The first term is the

contribution to dist)ersion from the shape of the velocity profile in eacfipore.
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The second term is the contribution to dispersion from the differences in

the fluid velocities in each pore. These differences cause the solute to

“spread” due primarily to a convective effect. Note that it does not depend

on Di. Since the pores are not connected, naturally this term is time-

dependent and would become very important for large times. The effect of the

distribution of pore sizes is taken into account by the fact that both Di

and <v >.21 are functions of ri. Me now study this effect by introducing

the appropriate expressions for <vz>i and IIi for the case of laminar and

turbulent flow.

3. Laminar Flow Case

In laminar flow, the area-averaged velocity in cylindrical pores is

governed by the Hagen-Poiseuille equation [6],

r?
Ap

II
<v >. = — —-
21 8; L

(32)

while the dispersion coefficient was derived by Taylor [7] and later modified

to include molecular diffusion in the axial direction by .Aris [81,

2<V >. r.
Di =0+ &’ (33)

where U is the molecular diffusivity. Using Eqs. (32) and (5) we can express

<!/ >.
21 in terms of {Vz}, ?[

?
i E

2i

{Vz}
‘=

<v >. =
21 N

z
r4
i

i=l

(34)
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while substituting (34) into (33) we can write Di in terms of {Vz},

N

E
rz

= ~+ {vz}z r?

i

Di 1

()

i=l
48V rJ (35)

I

~4
i

i=l

Similarly, Eq. (26) for LUi becomes,

r4

W. = i
1 N (36)

I 4
r.
1

i=l

Substituting Eqs. (34), (35) and (36) into Eq. (31) for {D}* leads to,

r~ 2

~(z)

N
$0 r2
i

E
rz

i
{vz}’ “

i

{D}* =~+
i=l— . ‘— + {Vz}zt

i=l
48V

N3

(E

!4

~4

[~ 1

r4
i i

i=l i=l

N

(12
r.
1

i=l

i=l

(37)
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If we represent the nth moment of the pore s“ze distribution by the summations,

●

N

ji=l

H zr~,n= 1,2, 3....

i=l

Eq. (38) reduces to,

—.
{vz}’ 10 2 2 T

nI-!u+{v]2tL&5~‘D}*=o+48U
(7)3 z (7)2 F

(38)

(39)

The second term on the right hand side is a Taylor dispersion term for the

laminar velocity profile properly modified to take into account the pore

size distribution. The second term is the spread due to velocity differences

between the pores. Note that {D}*

pore size distribution, indicating a

distribution.

depends on the higher moments of the

strong dependence on the spread of the

In order to investigate this effect, we considered the possibility

that the pore size distribution could be described by a Gaussian distribution

with standard deviation cs and average pore radius ;. Fortunately, there

are generating function techniques that allow one to calculate all the moments

of the Gaussian distribution [9]. Substituting these into Eq. (39) we obtain,

{V ~2#

{DT}* = 0+
;8V f,(g) + {vz}2t f@ (40)

where c = o/~ and the functions fl and f2 are given in the appendix

and plotted in Figure 2. As E + O , all the pores are

function f, -+1.0 while f2 + O, and one recovers the

from Eq. (40) with the radius equal to ~. As the pore

the same size, the

Taylor-Aris result

size distribution
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becomes broader, E increases, and both f, and f2 increase considerably,

indicating a strong dependence of the dispersion coefficient on the spread of

the pore size distribution.

One can follow the same procedure to find an equation analogous to

(39) for the case of rectangular pores of width

in the direction perpendicular to flow,

2Zi, and infinitely wide

where the 1“ represent the nth moment of the distribution of pore sizes.

The quantity 2/105 replaces the 1/48 for the cylindrical pore case and the

moment dependence is different. Using the results for the moments of a

Gaussian distribution in the

analogous to Eq. (40),

2
‘D}*= ‘+ 105

with fl(g) and f2(E) for

similarity between ‘1 and

cates

calcu”

< to

that there will not be

appendix, Eq. (42) can be written in a form

{vz}’ 12

v f,(~) + {Vz}’t f$c) (42)

rectangular gaps plotted in Figure 2. The great

‘2
for rectangular and cylindrical gaps indi-

much difference in the dispersion coefficients

ated from Eqs. (40) and (42). For practical purposes one wound expect

be less than or equal to 1 for most distributions.

We can put Eq. (9), and Eq. (40) in dimensionless form,

1

a{c}* + a{c)* = D* a2{c}*
ae —az az2 ‘

(43)
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{;}*D$r. — = 1 + ~Pe2f1 (E) + Pe2f2(C)6,

using the following dimension”

(44)

ess var”ables,

= {c}*/co, Pe = {Vz} ~/O (45)z ‘ ZW{VZ}F2, e = tP/F2, {C}*

Equation (43) may be solved readily using Fourier Transforms for the case of

a sharp input pulse placed at Z = O at time e = O,

so that,

with

{c}* = d(z) 0 = o,

02w(e) = [ 1 +~Pe2 fl(~) ]e + Pe2 f2(5)~

(46)

(47)

(48)

The effect of the pore size distribution on the spread of the pulse at a given

value of Z is illustrated in Figure 3. Note that as the spread of the

pore size distribution increases, the spread of the pulse is greatly magnified.

For large values of f3,the pulse width is dominated by the 02 term in Eq. (48),

pointing out the increased effect of the convective separation term.

4. Turbulent Flow Case

For the case of fully-developed turbulent flow in a smooth cylindrical

pore, the velocity is related to the friction factor by the equation [6],
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2ri
f= A&

[1
; p<vz>;

(49)

The friction factor under these conditions is well represented by the Blasius

formula [6],

f= 0.316 Re-1’4 (Re< 5 x 105) (50)

where the Reynolds number is defined as,

Re = <vz>i 2ri/v (51)

with v the kinematic viscosity. Combining Eqs. (49) and (51), we obtain

an explicit relationship for <vz>i,

where,

<v >.
Z1 = Ar~/7 (52)

(53)

Using Eqs. (5) and (52), it is easy to show that for the case of cylindrical

tubes,

t

r 5/7 r2
i i

i=l
<v >. =

Z1 {Vz}

f

(54)

r 19/7
i

j=l

This equation shows a much different relation between <vz>i and {vz) than

I
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the analogous Eq. (34) for laminar flow.

Taylor has used the universal velocity distribution for turbulent

flow to calculate a dispersion coefficient for turbulent flow in a tube [10]

in terms of the friction factor,

Di = 10.1 ri <vz>i
i

;f (55)

with f given by Eq. (50). Substituting Eq. (5!))into (55) we obtain,

Di = 1.8407 vi/8 r 7/8 .v;~/8
i

so that upon substitution of Eq. (54),

Di = 1.8407 V1’8 {vz}7/8 pi3/2

(56)

Z?
)
7/8

i

(57)
\ z+9/7/

i

Using Eqs. (26) and (54) we can calculate ~i for turbulent flow,

r 19/7
i~i =

(58)

z
r 19/7
i

In order to obtain the dispersion coefficient {D}* for the porous media in

turbulent flow, we substitute Eqs. (54), (57) and (58) into Eq. (31),

59/14 ~lig
.—

{D}* = 1.8407 V1’8 {VZ]7j8 ‘r + {vz}2t@

@9/7)15/8 @9/7)2

(59)

~7)(r2g/7) J2T77

. (r’g/7)
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where for simplicity we have extended the definition of rn , Eq. (38),

non-integer values of n. Equation (59) should be compared to Eq. (39)

for laminar flow. There are several obvious differences, but primarily

can point out the difference in the velocity dependence, the dependence

to

we

on

the pore size distribution, and the magnitudes of the coefficients in the

equations. In

dependencies o

have been obta

5. Comparison

the section that follows, we try to determine how the velocity

Eqs. (40) and

ned for dispers

59) compare to the experimental results that

on coefficients in packed beds.

to Experimental Data

In a real porous media, the pores are not completely segregated

as is the case in the model adopted here. This would tend to diminish the

role of the contribution to {D}* from the convective terms that gave rise

to the time-dependent term in Eq. (31). At best, the characteristic time

for this separation to occur will be of the order of the pore length divided

by the average velocity,

tc = u{vz} (60)

If the pore length is of the order of the pore radius, then Eq. (60) may

be made dimensionless,

0. = t.v/F2 = ‘D/;{v.) = Pe-l (61)

Substituting this

an expression for

L L L

value for the dimensionless time into Eq. (44), we obtain

the dimensionless dispersion coefficient,
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D* = 1 +~Pe2 f,(E) + pe f@ (62)

.

From the curves shown
*

f2/f, for reasonably

in Figure 2, we have reason to suspect that the ratio

narrow size distributions (0.1 < ~ <0.5) is of the order

-1
of 10 so that we may write Eq. (62) as,

D* = 1 + [ %2+ 0.10 Pel f,(c) (63)

The parameter fl may be treated as an adjustable parameter to fit data of

D* versus Pe in porous media. Bear [11] has summarized measured values of

D* from many investigators, and some representative results are given in

Figure 4. These results are in terms of the particle Peclet number, defined

as

(64)

where E is the bed void fraction, and ~p is the average particle diameter.

The points in this figure illustrate the trend and scatter in the more than

150 points in his comprehensive plot. There is data available through the

entire range of Pep, not just at the isolated points shown in Figure 4

of this paper.

If we associate ~ , the average pore radius in the parallel pore model,
0

with the hydraulic radius for the packed bed [12], we can relate ~ to

b ap for spherical particles,

(65)

As a result, Pe and Pep are related by the equation,
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Pe = Pep/6(1-E). (66)

A good estimate of E for packed beds is E = 0.40, so that Eq. (66) yields

Pe = 0.278 Pe . Figure 4 shows Eq. (63) with this estimate for Pe in terms
P

of Pe
P

for the special case of fl(~) = 2!).52. The Pep dependence of the

data matches very well the dependence predicted by Eq. (63) for all Pep < 102.

For Pe > 102, this equation greatly overestimates the value of D*. The—

theory lies above the data for Pep -+O since it does not take into account

the effect of the void fraction of the bed or tortuosity of the pores.

According to Figure 2, a value of fl(~) = 20 corresponds to a E = ~/~= 0.75,

which is less than one, as might be expected.

If we substitute the estimate for the characteristic time tc from

Eq. (60) into the equation for {D}* for turbulent flow, Eq. (59), and make

it dimens onless, we obtain,

D* . 1.8407 Sc1/8 pe7/8 gl(~) + Pe !12(C) (67)

where g,(g) and g2(C) are the analogs of the functions fl(~) and

f2(I) for turbulent flow. Note that Eq. (60) predicts a sliqht Schmidt

number dependence for D*. This dependence is so weak that it might easily

be masked by errors in experimental measurements of D*. Using the

value of

calculat

c = 0.75 used to fit the data in the laminar flow region and

ng gl(E) and g2(E) from the moment expressions, we obtain
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9] = 1.945 and gz = 0.081. In Figure 4 we plot Eq. (67) with these

values of gl and gz using the relationship Pe = 0.278 Pe
P“

The

slope of the curve of D* as a function of Pe
P

matches very well with

the slope of the experimental data, but the predicted D*

too small by a factor of 4.20 when Sc = 1.0. With Sc =

agreement is better.

values are

103, the

It could be argued that the agreement between the results of this admittedly

heuristic analysis and experimental data is fortuitous. However, it would

not be unreasonable to suspect that the elementary model adopted here has

some of the elements present in real flows in packed beds. The variation

in slope of the D* versus Pe~ curve is explained by our model as being

caused by a continuous transition from fully laminar flow to a flow having

turbulent characteristics. The transition from one type of flow to the other

could occur anywhere in the Pe range 10< Pep < 102,
P

possibly accounting

for the large degree of scatter in the data near Pep = 50.

Eq. (40), with the estimate for the characteristic time tc substituted

in for t, takes the form.

.
{Vz}z Fd

{D}* =0+ ----8y f@ + {Vz}zfz(g) (68)

According to the relationship between ~ and ~p , Eq. (65), as the mean

particle diameter increases, the mean pore radius will increase, and as the

spread of the particle size distribution increases, so will the spread of

the pore size distribution, Eq. (68) can be used to make some predictions

regarding the effect of the mean particle size and particle size distribution.
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First, one can predict that for small particles (~ small), the dependence

of {D}* on {vzl should be linear,while for large particles (~ large),

the dependence on {vz} should be second order. Furthermore, Eq. (69)

predicts, as we have indicated earlier, that {D}* should increase as the

spread of the particle size distribution increases (5 increases).

Table 1 summarizes the results of some measurements made b,yNiemann [13],

of the dispersion coefficient for liquid in packed beds for particle sizes

ranging in diameter from 0.03 to 0.15 mm for the small particles and from

0.15 to 0.75 mm for the large particles. Values of {vz} were very small,

in the range 0.4 < {vz} < 1.5 cm/min. For the small particle sizes the

power on the velocity was of the order 1.0 as predicted. For the larger

particles the power on {vz} was between 1. and 2.0. In all cases, the

wider the spread of the particle size distribution, the larger the dispersion

coefficient. The bed void fraction remained essentially constant for all

these experiments. These results present additional support for the

applicability of this simple dispersion model to dispersion in packed beds.
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25.

{D}* (cm2/min) = (a x 10-3) {vz}m

( {vz} in cm/min)

Experiment Description a
-------------------- ---------------------- --------------

1 Small beads, small spread of particle 0.51
size distribution

1

2 medium spread 0.71

3 large spread 1.0

4 Large beads, small spread 0.39

5 medium spread 0.68

6 large spread 0.78

m
------_-------

0.96

1.04

0.97

1.40

1.60

1.51

TABLE 1

Results of Niemann’s [13] experiments for dispersion coefficients for different

particle size distributions

I
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APPENDIX

Proof that mob = m.

In the context of

point in a cylindrical

<c>i by the equation,

Ci

the Taylor-Aris theory, the concentration at any

tube is related to the area-averaged concentration

a<c>i
= <c>.

1 + F(r)~ (Al)

where F(r) is a function of radial position. The bulk-averaged concentra-

tion .cbi is defined by,

<v >. c
zlbi

= <vz(r)ci(r)> (A.2)

where the brackets represent the area integral in cylindrical coordinates.

Substituting (Al) into (A.2) we find,

a<c>i
<v >. c =

zlbi
<v >. <c>. + <vzF> —

Z1 1 az (A.3)

Taking the zeroth moment of both sides of A.3 with respect to z, one can

show innnediately that,

~obi = moi (A.4)

since for a pulsed system <c>i = O at z = * m. Since Eq. (A.4)

holds in each pore, Eq. (13) holds for the porous media as a whole.



27.

u~mgnts of a Gaussian distribution

For a given distribution of the type,

p(r) dr = ~ [1e~p‘LLZiOY’% 202

the nth moment of the distribution,

r02

—-

rn = rn p(r) dr

-m

may be calculated using the generating function,

O(u) = exp[i~u - u2t2/2j

by the formula,

.n~
1 = M

dun U.o

(A.5)

(A.6)

(A.6)

(A.7)

—2carrying out the indicated operations, we calculated r through r
m

inclusive,

(A.8)
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~
= (1 + 36E2 + 378c9 + 126f)~’+ 945~8) #

~1o
= (1 + 45C2 + 630L’ + 315!l~’+ 4725~8 + 945~10) #0

where ~ = u/;. The functions fl(t) an~ f2(E) are obtained by substituting

=the expressions (A.8) into the terms containing the r in Eq. (39), namely,

——

r10(r2)! s f1(g)~2

(rz)3

,$,2[$! -q= f2(,,

(A.9)

(A.1O)
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NOTATION

A

Ai

Ap

Cbi

Ci

co

<c>.
1

{c}

constant in Eq. (52)

areaof pore i

total area of pores

bulk-averaged concentration in pore i

point concentration in pore i

characteristic concentration

area-averaged concentration in pore i

area-averaged concentration in porous media
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{C}b

{CID

{C}*

{c}*

7P

Di

{D]

{D}*

v

f

f,(t), f*(t)

F(r)

f!

‘k

‘ki

‘kb

‘obi

‘oD

p(r) dr

Pe

Pep

r

r.1

29.

bulk-averaged concentration

concentration defined by Eq. (8)

solution to dispersion

dimensionless {c}*

mean particle diameter

dispersion coefficient

coefficient defined by

dispersion coefficient

dimensionless {D)*

molecular diffusivity

friction factor

functions of the ratio

equation

in pore i

Eq. (6)

in dispersion equation

E for laminar flow

function multiplying gradient of <c>i

functions of the ratio E for turbulent flow

half gap width for rectangular pore

average value of li

characteristic pore length

kth axial moment of {c}

kth axial moment of <c>i

kth moment of {c}b

zeroth moment of cbi

zeroth moment of {c}D

pore size distribution

Peclet number {vz} F/V

particle Peclet number E{vz} ~p/tJ

radial position in a given pore

radius of pore i
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r

ji

Sc

t

vz(r)

<v >.
Z1

{Vz}

M (e)

z

z

average pore radius

nth moment of pore size distribution

Schmidt number, v/V

Greek Symbols

(1).
1

time

velocity profile in

area-averaqed fluid

area-averaged fluid

function defined by

axial position

dimensionless axial

a given pore

velocity in pore i

velocity in porous media

Eq. (48)

position

standard deviation of pore size distribution

dimensionless time

o/F

fraction of the total amount of solute in pore i
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